Lab Animal Health Monitoring

Cho-Hua Wan, D.V.M., Ph.D.
Dept. of Veterinary Medicine
National Taiwan University
Routine Health Monitoring

- Why to do it?
- What to do?
- When to do it?
- Where/who to do it?
- How to interpret the test results?
- What should we do after infectious agents are detected? (inputs from lab animal veterinarian)
Why To Perform Health Monitoring

- Public health problem
 - Zoonotic and human pathogens carried by animals
- Animal health problem
 - Pathogens fatal for animals
 - Pathogenic, but not fatal for animals
 - Opportunistic pathogens
- Affected research data
- Current animal problem to be solved
- Indicators of microbiologic status of an animal/colony
What To Do

- Routine health monitoring
 - Gross/behavior (Clinical signs) observations
 - Parasitology monitoring
 - Pathology monitoring
 - Serology testing
 - Molecular biology testing
 - Microbiology testing
When to Perform Health Monitoring

- Routine Health Monitoring
 - How frequently?
 - What assay?
 - How many animals?
 - Random samples
 - sentinels
- Problem solving
Who/Where to do it

- Gross/behavior monitoring (Clinical signs)
 - By animal care taker/user/diagnostic lab staff (lab animal center/diagnostic lab)

- Parasitology/serology/microbiology/pathology monitoring
 - By experienced diagnostic lab staff
 - By lab animal pathologist

- Result interpretation
How to do it

- Routine Health Monitoring
 - How frequently?
 - What assay?
 - How many animals?
 - Random samples
 - sentinels

- Problem solving
 - Important decision!
 - Discuss w/ lab animal veterinarian
Lab Animal Health Monitoring

- Behavior/activity observation
- Routine health monitoring
 - Parasitology monitoring
 - Pathology monitoring
 - Serology testing
 - Molecular biology testing
 - Microbiology testing
- Genetic monitoring/phenotyping
Behavior/Activity monitoring

- Behaviors in natural habitats
- Behaviors in good lab environments
- Behaviors in stress lab environments
- Behaviors of mutant/modified strain

- Posture
- Movement
 - Nude mutants (ICR nude) jump more
- Barbering
 - C57BL, C3H, CDF
- Aggression
 - male vs female
 - C57BL/10 vs CBA/Ca

Relied on animal care staff/users/veterinarian
Behavior/Activity monitoring

- Direct signs
 - Death, diarrhea, conjunctivitis, hunched posture, rough hair coat, weight loss, decreased activities, respiratory noise, swollen lymph nodes….

- Indirect signs
 - Reduced diet or water consumption…

- Changes in established reaction patterns
 - Anesthetic period, changed immunological patterns/data

*Relied on animal care staff/users/veterinarian
Behavior/Activity monitoring

- Most infections are subclinical
- Infectious agents are easily transmitted by subclinical infected animals

Diagnosis of the subclinical infectious diseases mostly relies on laboratory diagnostic methods!
Genetic Monitoring

- Genetic contamination
- Incomplete inbreeding/residual heterozygosity
- Genetic drift/substrain variation
- Genetically engineered strains
- Strains with mixed genetic background
 - Usu. performed in research institutes or in animal breeder companies
Phenotyping

- Phenotyping of Genetically Engineered Modified (GEM) Mice and Rats
 - An investigator may have created a knockout mouse intending to produce a model for diabetes, yet the mouse demonstrates a cardiovascular lesion
 - IL-k/o mice with typhlitis/colitis lesion
 Infectious disease?
 Abnormality caused by ‘Genetic modification’?
Phenotyping Methods

- **Primary assessments**
 - Clinical characteristics (activity, gross anatomy, reproduction, life span)
 - Pathology (clinical & histopathologic)

- **Secondary assessments**
 - Embryonic evaluation
 - Physiology
 - Biochemistry
 - Behavior
Routine Health Monitoring

- Parasitology monitoring
- Pathology monitoring
- Serology testing
- Molecular biology testing
- Microbiology testing
Parasitology

- **Diagnosis**
 - Based on morphology (frequently)
 - Molecular diagnosis (less frequently)

- **Ectoparasite**
 - fur between ears, shoulders, or hip (dorsal area)—fur mites

- **Endoparasite**
 - Mucosal/content smear—protozoa
 - Perianal Tape Test—pin worms
 - Fecal test—pin worms & tapeworms

Photos obtained from RADIL website
Parasitology

- Endoparasite
 - Tissue gross/histo exam
 - Cysticercoid cyst
 - Cysticercus fasciolaris (in liver, cyst of cat tape worm)
 - Trichosomoides crassicauda

Photos obtained from RADIL website
Routine Health Monitoring

- Parasitology monitoring
- Pathology monitoring
 - Infectious diseases
 - Non-infectious disorders
- Serology testing
- Molecular biology testing
- Microbiology testing
Pathology Testing

- **Histopathology**
 - Interpretation of tissue morphology (gross and histological lesions)
 - Disease diagnosis
 - Health monitoring

- **Clinical Pathology**
 - Clinical chemistry (liver, kidney, and multi-organ functions)
 - Hematology
 - Cytology

- Phenotyping of genetically-modified animals
Histopathology Testing

- Disease Diagnosis
 - Rely on typical histo lesions & staining characteristics
- Routine Health monitoring
Rodent Microbes

- Parvovirus
- Coronavirus
- Cytomegalovirus
- Sendai virus
- PVM
- LCM
- Mousepox
- Reovirus
- Hantavirus
- Herpesvirus
- Rotavirus
- Clostridium piliforme
- Mycoplasma pulmonis
- Pseudomonas aeruginosa
- Corynebacterium kutscheri & bovis
- Streptobacillus moniliformis
- Pasteurella pneumotropica
- Citrobacter rodentium
- Staphylococcus aureus
- Helicobacter spp.
- CAR bacillus
- Pneumocystis
- Proteus mirabilis
- Streptococcus
- Salmonella
- Chlamydia
- Klebsiella
- Dermatophytes
Gross Lesion

- SDAV/RCV infection (coronavirus)
 - Cervical swelling
 - Nasal/ocular discharges (porphyrin stained)

Photos obtained from RADIL & Merck websites
Histopathology

- SDAV/RCV infection
 - Inflammation of salivary glands and Harderian glands

Photos obtained from AFIP website
Histopathology

- Mouse Hepatitis Virus (MHV) (coronavirus)

Photos obtained from RADIL website
Histopathology

- Tyzzer’s Disease (*C. piliforme*)

Photos obtained from RADIL website
Histopathology

- *Helicobacter* spp.

Photos obtained from RADIL website
Histopathology

- Chronic Respiratory Disease
 - *Mycoplasma pulmonis*
 - Cilia-Associated Respiratory (CAR) Bacillus

Photos obtained from RADIL website
Histopathology

- Encephalitozoon cuniculi

Photos obtained from RADIL website
Histopathology

- Ectromelia virus (mousepox)

Photos obtained from RADIL website
Emerging Disease

- Rat Respiratory Virus (RRV)
 - A hantavirus
 - Idiopathic interstitial pneumonia of rat

Photos obtained from RADIL website
Clinical Pathology

- Urinalysis
 - Kidney, liver,
- Hematology & Clinical Chemistry
 - Species/strain variation
Typical gross/histopathology lesions are uncommon for most infectious agents.

Animal sacrifice is required.

- Serology/molecular biology/microbiology diagnostics are the choice.
- Histopath is the great method to identify new pathogens or disorders.
Routine Health Monitoring

- Parasitology monitoring
- Pathology monitoring
- **Serology testing**
- Molecular biology testing
- Microbiology testing
Serologic Test

- Traditional Assays
 - Enzyme-Linked ImmunoSorbent Assay (ELISA)
 - Indirect Fluorescent Antibody Test (IFA)
 - Hemagglutination Inhibition Assay (HAI)
Serology Testing

- Traditional Assays
 - ELISA
 - Ag-coated microplates (polystyrene or polyvinyl)
 - Primary Aby
 - Enzyme-conjugated secondary Aby
 - Chromogenic enzyme substrate
 * Sensitive, Specific?
Serology Testing (continual)

- Traditional Assays
 - IFA
 - Infected and uninfected cells fixed to wells in a glass slide
 - Primary Aby
 - Fluorescent labeled secondary Aby
 * Sensitive, Specific
Serology Testing (continual)

- **Traditional Assays**
 - **HAI**
 - The ability of specific Aby to inhibit virus-mediated hemagglutination
 - V-bottom microplate
 - Rodent parvoviruses, Reovirus type 3, Pneumonia virus of mice, Sendai virus
 * Low sensitivity, High Specificity
Serology Testing (continual)

- **Traditional Assays**
 - Advantage
 - Cheap equipment
 - Automated (ELISA)
 - Sensitive (ELISA, IFA)
 - Specific (IFA, HAI)
 - Disadvantage
 - Individual Assay (inefficient)
 - Manual (IFA & HAI) (labor-intensive)
 - Insensitive (HAI)
Improvement in Detection

- **Multiplex & Automation**
 - Multiplex Fluorescent Immunoassay (MFI)
 - Microspheres internally dyed with red and infrared fluorophores
 - 100 different microspheres

<table>
<thead>
<tr>
<th></th>
<th>Aby α A</th>
<th>Aby α B</th>
<th>Aby α C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Improvement in Detection (Continual)

- Automation & Multiplex
 - ElectroChemiluminescence
- Coated nitrocellulose membrane
- the light emitting chemiluminescent reaction is preceded by an electrochemical reaction.

Ru(bpy)$_2$ = BV-TAGTM Label
"Ru(bpy)$_2"$ = BV-TAG Label
TPA = Tripropylamine
Serology Testing (continual)

- MFI & ECL Assays
 - Advantage
 - Automated
 - Multiplex
 - Sensitive & Specific
 - Less amount of test article required
 - Disadvantage
 - Expensive equipment
Routine Health Monitoring

- Parasitology monitoring
- Pathology monitoring
- Serology testing
- Molecular biology testing
- Microbiology testing
Molecular Biology Diagnostics

- Application of molecular biology methodologies in nucleic acid detection
- Monitoring
 - The nucleic acids from microbes (virus, bacterium, parasite)
 - The genetic materials from biotics
 - The expression status of genes (mRNA)
Molecular Biology Methodologies

- **Nucleic acid amplification**
 - PCR, RT-PCR, nested PCR (in test tubes)
 - *In-situ* PCR, *in-situ* RT-PCR

- **Nucleic acid hybridization**
 - Southern blotting (detecting DNA)
 - Northern blotting (detecting RNA)
 - *In-situ* hybridization

- **Sequencing**

- **Restriction enzyme digestion**
 - Restriction fragment length polymorphism (RFLP)
Nucleic acid amplification

- PCR
- RT-PCR
- In situ PCR
- In situ RT-PCR

Forward Primer

Reverse Primer

1st cycle

\(2^{n-1}\) amplicon

\(n=30\)

\(10^9\) amplicon
Nucleic Acid Hybridization

- Southern blot
- Northern blot
- *In situ* hybridization
 - DNA
 - RNA

Target gene

Add probe
Molecular Biology Methodologies

- Sequencing
 - Time consuming
 - Cost
 - Effort

- Restriction digestion (RFLP)

Strain A: E E E
Strain B: E E

E: EcoRI

A B
Molecular Biology Diagnostics

- Goals
 - Sensitive
 - Accurate
 - Fast

★ Amplification
★ PCR/RT-PCR
PCR/RT-PCR

- Primer design
 - Generic v.s. Specific
 - Conserved region v.s. Diverse region

EX. Rodent parvoviruses:
 - Generic rodent parvovirus PCR
 NS region: ~90% similarity
 - MMV, MPV, KRV, H-1 specific PCR
 VP region: ~70-75% similarity
PCR/RT-PCR

- Specimen quality
 - Clinical samples
 - Feces, urine, blood, bio-swab, tissues
 - Inhibition factors
 - Cultural & environmental specimens
 - Cells, media, cage swab
 - Amount of specimen to screen
 - Inhibition factors

 ❖ False Negative!
Rodent Parvoviruses

- **Mouse**
 - Mice Minute Virus (MMV)
 - Mouse Parvovirus 1 (MPV-1)

- **Rat**
 - Kilham Rat Virus (KRV)
 - Toolan’s H-1 Virus (H-1)
 - Rat Parvovirus 1 (RPV-1)
 - Rat Minute Virus 1 (RMV-1)

- **Hamster**
 - Hamster Parvovirus (HaPV)
Diagnosis of Parvovirus Infection

- PCR assays (Mesenteric LN, Spleen)
 - Generic PCR assay
 - Serotype specific PCR assays
 - KRV specific
 - H-1 specific
 - RMV-1 specific
 - MMV specific
 - MPV/HaPV specific

RMV-1 Specific
Rodent Coronaviruses

- **Mouse**
 - Mouse Hepatitis Virus
 - Multiple strains
 - Polytrophic (respiratory): JHM, 1, 2, 3, A59, S
 - Usually more virulent
 - Enteric: D, Y, DVIM
 - Highly mutable (esp. the S gene)
 - Pathogenic vs. nonpathogenic

- **Rat**
 - Rat Coronavirus/Sialodacryoadenitis virus (RCV/SDAV)
 - Multiple strains
Rodent Coronavirus

- Linear, ss(+) RNA
- **Generic** RT-PCR
 - Both MHV & RCV/SDAV
 - MHV: feces or mesenteric LN
 - RCV/SDAV: Salivary gland or Harderian gland or lung
- ✷ No virus species/strain-specific RT-PCR
Helicobacter in Rodents

- Gram-negative, spiral
- Enterohepatic infection
 - \(H. \text{ hepaticus} \)
 - \(H. \text{ bilis} \)
 - \(H. \text{ typhlonius} \)
 - \(H. \text{ rodentium} \)
- Hepatitis, enterocolitis, hepatocellular neoplasmas
- Model for \(H. \text{ pylori} \)
Enterocolitis

Photos obtained from RADIL website
Helicobacter Generic PCR

- **Consensus region of helicobacters**
- **ß-Actin PCR**
 - Housekeeping gene
 - Extraction control
 - Inhibition factors monitor
- *Fecal PCR*

<table>
<thead>
<tr>
<th>hepa</th>
<th>bilis</th>
<th>typh</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>10^2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Helicobacter: 375 bp
ß-Actin: 272 bp
Helicobacter Species-specific PCR

- *H. hepaticus* specific
- *H. bilis* specific
- *H. typhlonius* specific
- *H. rodentium* specific

* Fecal PCR

![Image of gel electrophoresis](image.png)

- *H. hepaticus*: 396 bp
- Sensitivity: 10 copies
Improvement in Amplification

- **Multiplex PCR**
 - ↑ information for client dollar
 - ↑ efficiency

<table>
<thead>
<tr>
<th>Template copies</th>
<th>10³</th>
<th>10²</th>
<th>10</th>
<th>Fecal Control</th>
<th>No template</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. hepaticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. typhlonius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. bilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Signal Amplification

- PCR-ELISA

PCR
- Forward Primer
- Reverse Primer
- nth cycle

ELISA
- Anti
- Antibody

Add substrate.
The amount of product is directly related to the amount of specific antibody present.

Add enzyme-labeled antigen.
This binds to the antibody.

Wash
Signal Amplification

- PCR-Oligo hybridization

PCR

Hybridization

Forward Primer

Reverse Primer

n^{th} cycle
Signal Amplification

- PCR- RFLP

PCR
- Forward Primer
- Reverse Primer
- nth cycle

RFLP
- Strain A
 - EcoRI
- Strain B
 - EcoRI

E: EcoRI
Improvement in Detection

- Automation
 - Labeled Probe
 - TaqMan
 - Quantitative Real-time v.s. endpoint PCR
 - The fluorogenic 5' nuclease PCR assay
 - the 5' --> 3' nuclease activity of Taq
 - the emission of the reporter dye is quenched by the intact quencher
Improvement in Detection

- Automation & Multiplex
 - Multiplex Fluorescent Assay
 - Microspheres internally dyed with red and infrared fluorophores
 - 100 different microspheres

<table>
<thead>
<tr>
<th>Amplicon</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Improvement in Detection (Continual)

- Automation & Multiplex
 - ElectroChemiLuminescence
 - Oligo-coated membrane
 - the light emitting chemiluminescent reaction is preceded by an electrochemical reaction.
Emerging Disease

- Murine Norovirus
 - Related to human Norwalk virus
 - Primary GI infection
 - No clinical signs in naturally infected mice
Emerging Disease

- Murine Norovirus exp. inoculation
 - RAG/STAT-/- mice exhibited high Mt with encephalitis, meningitis, vasculitis, pneumonia, hepatitis
 - RAG-/- exhibited low Mt but persistently infected
 - Immunocompetent mice seroconverted and transiently infected
 - Mice with no INF$_{\alpha\beta}$ and IFN$_{\gamma}$ receptors are more susceptible to MNV infection.
Microbiology monitoring

- Isolation of microbes in pure culture
 - Routine monitoring area: Nasopharynx and cecum (rodents and rabbits)
 - Area of suspected lesions
- Some organisms require specific culture medium and conditions
Culture Methods

- Sensitive and expressive
- Results are dependent on culture media, experience,…
- Expensive, sometimes time consuming and labor-extensive
- For most bacteria and fungi: the best method
Techniques for Definite Diagnosis of Rodent Infections

- **Positive results: What can be done**
 - Confirm lab results
 - Retest the same sample
 - Retest with other method
 - Retest in other diagnostic lab
 - Retest samples from the same source
 - Rule out the cross-reaction
 - Cross reactivity with related organisms
How to Interpret the Results

- Possible combinations of results of different testing (e.g. serology and PCR for MPV)

<table>
<thead>
<tr>
<th>Sample</th>
<th>MPV ELISA</th>
<th>MPV PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Routine Health Monitoring

How frequently to screen?
What assay/method to be applied?
How to interpret the results?